1.(北师大版第59页A组第2题)正弦定理与余弦定理 在中.若 .则. A. B. C. D. 变式1:在中.若 ...则 . 答案:1或3 变式2:在中.若 ...则此三角形的周长为 . 答案: 变式3:已知a.b.c是△ABC中∠A.∠B.∠C的对边.S是△ABC的面积.若a=4.b=5.S=5.求c的长度. 解:∵S=absinC.∴sinC=.于是∠C=60°或∠C=120° 又∵c2=a2+b2-2abcosC. 当∠C=60°时.c2=a2+b2-ab.c= 当∠C=120°时.c2=a2+b2+ab.c= ∴c的长度为或 查看更多

 

题目列表(包括答案和解析)

中,内角A,B,C所对的分别是a,b,c。已知a=2,c=,cosA=.

(I)求sinC和b的值;

(II)求的值。

【考点定位】本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角和余弦公式以及正弦定理、余弦定理等基础知识,考查基本运算求解能力.

 

查看答案和解析>>

中,内角A,B,C所对的分别是a,b,c。已知a=2,c=,cosA=.
(I)求sinC和b的值;
(II)求的值。
【考点定位】本小题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角和余弦公式以及正弦定理、余弦定理等基础知识,考查基本运算求解能力.

查看答案和解析>>

在△中,分别为内角的对边,且

(1)求角的大小;

(2)若,试判断△的形状.

【解析】本试题主要考查了解三角形中正弦定理和余弦定理的运用。求解变和角,并定形的问题。

 

查看答案和解析>>

如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

 

【解析】本试题考查了利用正弦定理和余弦定理求解三角形的实际运用。并考查了分析问题和解决问题的能力。

 

查看答案和解析>>

已知△的内角所对的边分别为.

 (1) 若, 求的值;

(2) 若△的面积 求的值.

【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中,得到正弦值,再结合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得

 

查看答案和解析>>


同步练习册答案