3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集.记作U, (2)若S是一个集合.AS.则.=称S中子集A的补集, ()=A,2)S=.=S. 查看更多

 

题目列表(包括答案和解析)

如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图 (1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

(1)试举出一直线与一平面相互垂直的例子(不少于4例);

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>

如图2-3-9,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图2-3-9(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

                                      图2-3-9

(1)试举出一直线与一平面相互垂直的例子(不少于4例).

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>

如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

(1)试举出一直线与一平面相互垂直的例子(不少于4例);

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>

教材中的用“二分法”求方程x2-2=0(x>0)的近似解的程序框图(见教材图1.120)包含了顺序结构、条件结构和循环结构.下面,我们把这个程序框图转化为相应的程序.

查看答案和解析>>

如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.

(1)试举出一直线与一平面相互垂直的例子(不少于4例);

(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.

查看答案和解析>>


同步练习册答案