20.(1)证: 设 ------------- (2)解:设 在R上单调递减.-------------------- (3) ①--- 又 ②--- 由同时满足①.②的点(的集合求Z. ∴Z∈[4.6]------------ 21解:(I)当时. 在上是增函数.此时 当时. 当时. 在上是增函数.此时 的值域为-----------6 分 若.对于任意..不存在 使得 成立 (2)若当 时. 在[-2.2]是增函数. 任给.. 若存在.使得成立. 则 --------------10分 (3)若.在[-2.2]是减函数. 综上.实数的取值范围是------------14 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案