题目列表(包括答案和解析)
(本小题满分16分)
如图,在平面直角坐标系
中,已知点
为椭圆
的右顶点, 点
,点
在椭
圆上,
.
![]()
(1)求直线
的方程;
(2)求直线
被过
三点的圆
截得的弦长;
(3)是否存在分别以
为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
(本小题满分16分) 如图,在平面直角坐标系
中,已知点
为椭圆
的右顶点, 点
,点
在椭圆上,
.
(1)求直线
的方程; (2)求直线
被过
三点的圆
截得的弦长;
(3)是否存在分别以
为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不
存在,请说明理由
![]()
(本小题满分16分)
如图,在直角坐标系中,
三点在
轴上,原点
和点
分别是线段
和![]()
的中点,已知
(
为常数),平面上的点
满足
。
(1)试求点
的轨迹
的方程;
(2)若点
在曲线
上,求证:点
一定在某圆
上;
(3)过点
作直线
,与圆
相交于
两点,若点
恰好是线段
的中点,试求直线
的方程。
(本小题满分16分)
如图,在直角坐标系中,
三点在
轴上,原点
和点
分别是线段
和![]()
的中点,已知
(
为常数),平面上的点
满足
。
(1)试求点
的轨迹
的方程;
(2)若点
在曲线
上,求证:点
一定在某圆
上;
(3)过点
作直线
,与圆
相交于
两点,若点
恰好是线段
的中点,试求直线
的方程。
(本小题满分16分)
如图,在平面直角坐标系
中,已知曲线
由圆弧
和圆弧
相接而成,两相接点
均在直线
上.圆弧
的圆心是坐标原点
,半径为13;
圆弧
过点
(29,0).
(Ⅰ)求圆弧
的方程.
(Ⅱ)曲线
上是否存在点
,满足
?若存在,
指出有几个这样的点;若不存在,请说明理由.
(Ⅲ)已知直线
与曲线
交于
两点,
当
=33时,求坐标原点
到直线
的距离.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com