方法--相关点法 1. 对称分两大类 (1)关于点中心对称:点关于定点中心对称点 (2)关于直线轴对称:点关于直线的对称点.则解出的值为: 2. 常用对称的规律:已知点.直线 (1)关于X轴对称的对称点, (2)关于Y轴对称的对称点, (3)关于直线的对称点, (4)关于直线的对称点, (5)关于原点的对称点, (6)关于点的对称点, (7)关于直线的对称点, (8)关于直线的对称点, (9)关于直线的对称点, (10)关于直线的对称点, 思考:我们注意到只须将对称点的坐标Q代入直线L即得对称的直线方程.为什么? 它们的理论依据是什么?--“相关点法 我们以(9)题为例.即求直线.关于直线对称的直线方程. 解:设所求直线上任意一点 关于直线的对称点 则 ∴ ∴ ∵ ∴ 即: 点拨:① 代入对称点坐标的理论依据是“相关点法 ② 有关对称性问题都可用“相关点法 求对称曲线. 查看更多

 

题目列表(包括答案和解析)

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

(2013•海淀区一模)设A(xA,yA),B=(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=τ(A).已知P0(x0,y0)(x0,y0∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=τ(Pi-1),且点Pi的坐标为(xi,yi),其中i=1,2,3,…n.
(Ⅰ)请问:点P0的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;
(Ⅱ)求证:若P0与Pn重合,n一定为偶数;
(Ⅲ)若p0(1,0),且yn=100,记T=
ni=0
xi
,求T的最大值.

查看答案和解析>>

(2013•海淀区一模)设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

(04年广东卷)(12分)

某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚,已知各观测点到中心的距离都是,试确定该巨响的位置。(假定当时声音传播的速度为,各相关点均在同一平面上)

查看答案和解析>>

A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,则称点B为点A的“相关点”,记作:B=f(A).

(1)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;

(2)已知点H(9,3),L(5,3),若点M满足M=f(H),L=f(M),求点M的坐标;

(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)为一个定点, 若点Pi满足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

 

查看答案和解析>>


同步练习册答案