已知一直线倾斜角为.且直线过(.)则直线方程为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知直线l的参数方程为
x=2+tcosα
y=tsinα
,(t为参数,α为倾斜角,且α≠
π
2
)与曲线
x2
16
+
y2
12
=1交于A,B两点.
(Ⅰ)写出直线l的一般方程及直线l通过的定点P的坐标;
(Ⅱ)求|PA||PB|的最大值.

查看答案和解析>>

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求
PQ
MQ
的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

已知倾斜角为45°的直线l过点A(1,-2)和点B,B在第一象限,|AB|=3
2

(1)求点B的坐标;
(2)若直线l与双曲线C:
x2
a2
-y2=1
(a>0)相交于E、F两点,且线段EF的中点坐标为(4,1),求a的值;
(3)对于平面上任一点P,当点Q在线段AB上运动时,称|PQ|的最小值为P与线段AB的距离.已知点P在x轴上运动,写出点P(t,0)到线段AB的距离h关于t的函数关系式.

查看答案和解析>>

已知椭圆C的中心在原点,一个焦点F(0,
2
)
,且长轴长与短轴长的比是
2
:1

(1)求椭圆C的方程;
(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;
(3)求△PAB面积的最大值.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P,且PF2⊥x轴,则此椭圆的离心率e为(  )
A、
3
3
B、
3
2
C、
2
2
D、
2
3

查看答案和解析>>


同步练习册答案