(Ⅰ)证法一:设点P的坐标为 由P在椭圆上.得 由.所以 ---------3分 证法二:设点P的坐标为记 则 由 证法三:设点P的坐标为椭圆的左准线方程为 由椭圆第二定义得.即 由.所以----------3分 (Ⅱ)解法一:设点T的坐标为 当时.点(.0)和点(-.0)在轨迹上. 当|时.由.得. 又.所以T为线段F2Q的中点. 在△QF1F2中..所以有 综上所述.点T的轨迹C的方程是----------7分 解法二:设点T的坐标为 当时.点(.0)和点(-.0)在轨迹上. 当|时.由.得. 又.所以T为线段F2Q的中点. 设点Q的坐标为().则 因此 ① 由得 ② 将①代入②.可得 综上所述.点T的轨迹C的方程是--------7分 ③ ④ (Ⅲ)解法一:C上存在点M()使S=的充要条件是 由③得.由④得 所以.当时.存在点M.使S=, 当时.不存在满足条件的点M.---------11分 当时.. 由. . .得 解法二:C上存在点M()使S=的充要条件是 ③ ④ 由④得 上式代入③得 于是.当时.存在点M.使S=, 当时.不存在满足条件的点M.---------11分 当时.记. 由知.所以----14分 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>


同步练习册答案