设函数则实数a的取值范围是 . 23不等式的解集为 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(x)=0恒成立.如果实数m、n满足不等式组
f(m2-6m+23)+f(n2-8n)<0
m>3
’则m2+n2的取值范围是(  )

查看答案和解析>>

设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立,如果实数m,n满足不等式组
m>3
f(m2-6m+23)+f(n2-8n)<0
,则m2+n2的取值范围为(  )

查看答案和解析>>

设f(x)是定义在R上的奇函数,且对于任意的x∈R,f(1+x)-f(1-x)=0恒成立,当x∈[0,1]时,f(x)=2x,若方程f(x)=ax恰好有5个不同的解,则实数a的取值范围是(  )

查看答案和解析>>

(理)设f(x)是定义在R上的奇函数,且对于任意的x∈R,f(1+x)=f(1-x)恒成立.当x∈[0,1]时,f(x)=2x.若关于x的方程f(x)=ax有5个不同的解,则实数a的取值范围是
a=
2
5
-
2
3
<a<-
2
7
a=
2
5
-
2
3
<a<-
2
7

查看答案和解析>>


同步练习册答案