考查能力是高考永恒的主题.高考数学能力的考查主要是对逻辑思想能力.运算能力.空间想像能力.分析问题和解决问题的能力.在高三数学二.三复习中.尤其要注意逻辑思维能力与运算能力的提高.要学会观察.比较.分析.综合.抽象和概括.会用归纳.演绎和类比进行推理.会用简明准确的数学语言阐述自己的思想和观点.要会根据法则.公式定理.定律正确地进行运算的同时.会理解算理.能够根据题目的条件寻求合理.简捷的运算途径.以达到准确.熟练.迅速的运算. 专题一 函数与导数 能力培养1. (启东中学, 中档题, 5分值, 4分钟) 设定义域为R的函数.则关于的方程有7个不同实数解的充要条件是( ) A.且 B.且 C.且 D.且 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为是等比数列,且 

(I)求数列的通项公式;

(II)记求证:,

【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

查看答案和解析>>

已知是等差数列,其前n项和为是等比数列,且 
(I)求数列的通项公式;
(II)记求证:,
【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.

查看答案和解析>>

已知数列中,,点在直线上,其中…。

(1)令,证明数列是等比数列;

(2)设分别为数列的前项和,证明数列是等差数列。

【解析】本试题主要考查了等差数列和等比数列的通项公式以及数列的求和的综合运用问题。既考查了概念,又考查了同学们的计算能力。

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>


同步练习册答案