18. 设.. (Ⅰ)令.讨论在内的单调性并求极值, (Ⅱ)求证:当时.恒有. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设函数),

(Ⅰ)令,讨论的单调性;

(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)设函数),
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)设函数),
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案