设P={x|x=a2+2a+1.a∈R}.Q={y|y=b2+2b-2.b∈R}.则P与Q的关系是( ) A.P=Q B.PQ C.QP D.P∩Q= 查看更多

 

题目列表(包括答案和解析)

设 P(x,y),Q(x′,y′) 是椭圆 
x2
a2
+
y2
b2
=1
(a>0,b>0)上的两点,则下列四个结论:①a2+b2≥(x+y)2;②
1
x2
+
1
y2
≥(
1
a
+
1
b
)2
;③
a2
x2
+
b2
y2
≥4
;④
xx′
a2
+
yy′
b2
≤1
.其中正确的个数为(  )

查看答案和解析>>

设x1,x2∈R,常数a>0,定义运算“*”:x1*x2=(x1+x22-(x1-x22
(1)若x≥0,求动点P(x,
x*a
)
的轨迹C的方程;
(2)若a=2,不过原点的直线l与x轴、y轴的交点分别为T,S,并且与(1)中的轨迹C交于不同的两点P,Q,试求
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
的取值范围;
(3)设P(x,y)是平面上的任意一点,定义d1(P)=
1
2
(x*x)+(y*y)
d2(P)
=
1
2
(x-a)*(x-a)
.若在(1)中的轨迹C存在不同的两点A1,A2,使得d1(Ai)=
a
d2(Ai)(i=1,2)
成立,求实数a的取值范围.

查看答案和解析>>

设x1、x2∈R,规定运算“*”:x1*x2=(x1+x22+(x1-x22
(Ⅰ)若x≥0,a>0,求动点P(x,
a*x
)的轨迹c;
(Ⅱ)设P(x,y)是平面内任意一点,定义:d1(p)=
1
2
(x*x)+(y*y)
,d2(p)=
1
2
(x-a)*(x-a)
,问在(Ⅰ)中的轨迹c上是否存在两点A1、A2,使之满足d1(Ai)=
a
d2(Ai
)(i=1、2),若存在,求出a的范围.

查看答案和解析>>

设 P(x,y),Q(x′,y′) 是椭圆 
x2
a2
+
y2
b2
=1
(a>0,b>0)上的两点,则下列四个结论:①a2+b2≥(x+y)2;②
1
x2
+
1
y2
≥(
1
a
+
1
b
)2
;③
a2
x2
+
b2
y2
≥4
;④
xx′
a2
+
yy′
b2
≤1
.其中正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

设x1、x2∈R,规定运算“*”:x1*x2=(x1+x22+(x1-x22
(Ⅰ)若x≥0,a>0,求动点P(x,)的轨迹c;
(Ⅱ)设P(x,y)是平面内任意一点,定义:d1(p)=,d2(p)=,问在(Ⅰ)中的轨迹c上是否存在两点A1、A2,使之满足d1(Ai)=)(i=1、2),若存在,求出a的范围.

查看答案和解析>>


同步练习册答案