19.解:(Ⅰ)由已知条件.直线的方程为. 代入椭圆方程得. 整理得 ① 直线与椭圆有两个不同的交点和等价于. 解得或.即的取值范围为. (Ⅱ)设.则. 由方程①.. ② 又. ③ 而. 所以与共线等价于. 将②③代入上式.解得. 由(Ⅰ)知或.故没有符合题意的常数. 辽宁理 查看更多

 

题目列表(包括答案和解析)

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>


同步练习册答案