2.设F1.F2为椭圆两焦点.点P是以F1.F2为直径的圆与椭圆的一个交点.若∠PF1F2=5∠PF2F1.则椭圆离心率为( ). A. B. C. D. 分析:P在以F1F2为直径的圆上.则∠F1PF2=90°. 而∠PF1F2=5PF2F1.∴ ∠PF1F2=75°. ∠PF2F1=15°.∴ . .而|PF2|+|PF2|=2a,∴ . 查看更多

 

题目列表(包括答案和解析)

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:+=1(a>b>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:+=1(a>b>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>


同步练习册答案