7.在等差数列{an}中.公差d≠0,且a2是a1和a4的等比中项,已知a1,a3,成等比数列.求数列k1,k2,k3,-,kn的通项kn 查看更多

 

题目列表(包括答案和解析)

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)设bn=
4
n•(an+7)
(n∈N*),数列{bn}的前n项和为Tn,求证:
1
2
Tn<1

(3)是否存在常数c(c≠0),使得数列{
Sn
n+c
}
为等差数列?若存在,试求出c;若不存在,说明理由.

查看答案和解析>>

已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为bn,求证:当且仅当c=-
1
2
时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=
8
(an+7)•bn
(n∈N*),数列cn的前n项和为Tn,现有数列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)通过bn=
Sn
n+c
构造一个新的数列{bn},是否存在一个非零常数c,使{bn}也为等差数列;
(3)求f(n)=
bn
(n+2009)•bn+1
(n∈N+)
的最大值.

查看答案和解析>>

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)通过数学公式构造一个新的数列{bn},是否存在一个非零常数c,使{bn}也为等差数列;
(3)求数学公式的最大值.

查看答案和解析>>

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1=a4=14.
(1)求数列{an}的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为{bn},求证:当且仅当c=-
1
2
时,数列{bn}是等差数列;
(3)对于(2)中的等差数列{bn},设cn=
8
(an+7)•bn
(n∈N*),数列{cn}的前n项和为Tn,现有数列{f(n)},f(n)=Tn•(an+3-
8
bn
)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)对一切n∈N*都成立?若存在,求出n0的值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案