18.解:(Ⅰ)证明:根据正弦定理得. 整理为.sinAcosA=sinBcosB.即sin2A=sin2B. ∴2A=2B或2A+2B= ∴. ∴舍去A=B. ∴即. 故△ABC是直角三角形. 可得:a=6.b=8. 在Rt△ACB中. ∴ = = 连结PB.在Rt△APB中.AP=AB·cos∠PAB=5. ∴四边形ABCP的面积 =24+=18+. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

在棱长为的正方体中,是线段的中点,.

(1) 求证:^

(2) 求证://平面

(3) 求三棱锥的表面积.

【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。

第三问中,是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为面积为.  所以三棱锥的表面积为.

解: (1)证明:根据正方体的性质

因为

所以,又,所以

所以^.               ………………4分

(2)证明:连接,因为

所以为平行四边形,因此

由于是线段的中点,所以,      …………6分

因为平面,所以∥平面.   ……………8分

(3)是边长为的正三角形,其面积为

因为平面,所以

所以是直角三角形,其面积为

同理的面积为,              ……………………10分

面积为.          所以三棱锥的表面积为

 

查看答案和解析>>

已知中,内角的对边的边长分别为,且

(I)求角的大小;

(II)若的最小值.

【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

第二问,

三角函数的性质运用。

解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

(Ⅱ)由(Ⅰ)可知 

,,则当 ,即时,y的最小值为

 

查看答案和解析>>

已知分别为三个内角,,的对边,.

(Ⅰ)求

(Ⅱ)若=2,的面积为,求.

【命题意图】本题主要考查正余弦定理应用,是简单题.

【解析】(Ⅰ)由及正弦定理得

   

由于,所以

,故.

(Ⅱ) 的面积==,故=4,

 故=8,解得=2

 

查看答案和解析>>

已知△的内角所对的边分别为.

 (1) 若, 求的值;

(2) 若△的面积 求的值.

【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中,得到正弦值,再结合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得

 

查看答案和解析>>


同步练习册答案