18. 学校要从高二年级14个班中选出5名同学参加交流活动.若班必须派一名同学参加.剩下2名在其余班级挑选.若用一次掷两枚骰子的方法.点数之和等于几则从这个班挑选.第二次掷若与第一次点数之和相等则再掷.直到确定了2个班级为止. (1)问此种方法是否合理.说明理由, (2)记随机变量为掷一次骰子中点数之和.列出的概率分布列, (3)求:若用以上方法一共掷了3次就确定了两个班级且班被选中的概率. 查看更多

 

题目列表(包括答案和解析)

为了考察某校的教学水平,将抽查这个学校高三年级的部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).

①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:

(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?

(2)上面三种抽取方式各自采用何种抽取样本的方法?

(3)试分别写出上面三种抽取方式各自抽取样本的步骤.

查看答案和解析>>

为了考察某校的教学水平,将抽查这个学校高三年级的部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).

①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14个学生的成绩;③把学校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:

(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?

(2)上面三种抽取方式各自采用何种抽取样本的方法?

(3)试分别写出上面三种抽取方式各自抽取样本的步骤.

查看答案和解析>>

(2012•临沂一模)某校从高二年级3个班中选出12名学生参加全国高中数学联赛,学生来源人数如下表:
班级 高二(1)班 高二(2)班 高二(3)班
人数 4 5 3
(1)从这12名学生中随机选出两名,求两人来自同一个班的概率;
(2)若要求从12名学生中选出两名介绍学习经验,设其中来自高二(1)班的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

有以下四个命题:
(1)在频率分布直方图中,表示中位数的点一定落在最高的矩形的边上.
(2)要从高二的12个班中选派2个班去文化中心看电影,其中1班是必去的,还有11个班用以下两种方法决定:一是掷两粒骰子,点数和是几,就几班去;二是用抽签的方法来决定,这两种方法都是公平的.
(3)概率为0的事件不一定为不可能事件.
(4)(x+
1
2
)8
的展开式的第二项的系数不是
C
0
8
,是
C
1
8

以上命题中所有错误命题的题号是
(1)、(2)、(4)
(1)、(2)、(4)

查看答案和解析>>

(2012•武昌区模拟)某校从高二年级4个班中选出18名学生参加全国数学联赛,学生来源人数如表:
班别 高二(1)班 高二(2)班 高二(3)班 高二(4)班
人数 4 6 3 5
(I)从这18名学生中随机选出两名,求两人来自同一个班的概率;
(Ⅱ)若要求从18位同学中选出两位同学介绍学习经验,设其中来自高二(1)班的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>


同步练习册答案