定义在上的函数.如果满足:对任意.存在常数.都有成立.则称是上的有界函数.其中称为函数的上界. 已知函数,. (1)当时.求函数在上的值域.并判断函数在上是否为有界函数.请说明理由, (2)若函数在上是以3为上界的有界函数.求实数的取值范围, (3)若.函数在上的上界是.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:
    ②     ③     ④
则其中是“保等比数列函数”的的序号为(   )

A.①②B.③④C.①③D.②④

查看答案和解析>>

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.
(1)判断函数是否是有界函数,请写出详细判断过程;
(2)试证明:设,若上分别以为上界,
求证:函数上以为上界;
(3)若函数上是以3为上界的有界函数,
求实数的取值范围.

查看答案和解析>>

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:

;   ②;    ③;    ④.

则其中是“保等比数列函数”的的序号为(    )

A.① ②                B.③ ④            C.① ③            D.② ④ 

 

查看答案和解析>>

定义在上的函数,如果对于任意给定的等比数列仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:①;   ②;    ③;    ④.则其中是“保等比数列函数”的的序号为

A、① ②                B、③ ④            C、① ③            D、② ④

 

查看答案和解析>>

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>


同步练习册答案