重点掌握椭圆.双曲线.抛物线的定义和性质.这些都是圆锥曲线的基石.高考中的题目都涉及到这些内容. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在△ABC中,∠CAB=∠CBA=30°,AC、BC边上的高分别为BD、AE,垂足分别是D、E,则以A、B为焦点且过D、E的椭圆与双曲线的离心率分别为e1、e2,则
1
e1
+
1
e2
的值为(  )

查看答案和解析>>

(2012•长春一模)设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|
F1
+
PF2
|=|
F1F2
|,则
e1e2
e
2
1
+
e
2
2
的值为(  )

查看答案和解析>>

下列关于圆锥曲线的命题:
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+
y2=1有相同的焦点.
其中真命题的序号
②③④
②③④
(写出所有真命题的序号).

查看答案和解析>>

已知椭圆与双曲线x2-
y23
=1
有公共的焦点,且椭圆过点P(0,2).
(1)求椭圆方程的标准方程;
(2)若直线l与双曲线的渐近线平行,且与椭圆相切,求直线l的方程.

查看答案和解析>>

已知椭圆
x2
m
+
y2
n
=1与双曲线
x2
p
-
y2
q
=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|•|PF2|=
m-p
m-p

查看答案和解析>>


同步练习册答案