设椭圆上存在两点关于直线对称.则的取值范围是 查看更多

 

题目列表(包括答案和解析)

设椭圆C:数学公式(a>b>0)的一个顶点坐标为A(数学公式),且其右焦点到直线数学公式的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(数学公式),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

设椭圆C:(a>b>0)的一个顶点坐标为A(),且其右焦点到直线的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.

(1)求椭圆的标准方程;

(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;

(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

 

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.
(1)求椭圆的标准方程;
(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;
(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
3
=1(a>
10
)的右焦点F在圆D:(x-2)2+y2=1上,直线l:x=my+3(m≠0)交椭圆于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点N关于x轴的对称点为N1,且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案