若P为椭圆上异于长轴端点的任一点,F1, F 2是焦点, , .则. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:
OM
OP
为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

精英家教网已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且过点P(2,
2
)
,设椭圆的右准线l与x轴的交点为A,椭圆的上顶点为B,直线AB被以原点为圆心的圆O所截得的弦长为
4
5
5

(1)求椭圆E的方程及圆O的方程;
(2)若M是准线l上纵坐标为t的点,求证:存在一个异于M的点Q,对于圆O上任意一点N,有
MN
NQ
为定值;且当M在直线l上运动时,点Q在一个定圆上.

查看答案和解析>>

设A,B分别为椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右顶点,椭圆的长轴长为4,且点(1,
3
2
)
在该椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.

查看答案和解析>>

已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于长轴端点A、B的任意点,若直线PA、PB的斜率乘积kPA•kPB=-
2
3
,则该椭圆的离心率为(  )

查看答案和解析>>


同步练习册答案