[巧证]:1°∵ ∴ ∴ 2°同理:. 三式相加: 3°由幂平均不等式: ∴ 查看更多

 

题目列表(包括答案和解析)

用数学归纳法证明“
n2+n
<n+1 (n∈N*)”.第二步证n=k+1时(n=1已验证,n=k已假设成立),这样证明:
(k+1)2+(k+1)
=
k2+3k+2
k2+4k+4
=(k+1)+1,所以当n=k+1时,命题正确.此种证法(  )

查看答案和解析>>

用数学归纳法证“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
(n∈N*)”的过程中,当n=k到n=k+1时,左边所增加的项为(  )
A、-
1
2k+2
B、
1
2k+1
C、
1
2k+1
-
1
2k+2
D、-
1
k+1
1
k+1

查看答案和解析>>

用数学归纳法证明“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
”时,由n=k的假设证明n=k+1时,如果从等式左边证明右边,则必须证得右边为(  )

查看答案和解析>>

(2011•奉贤区二模)(文)已知f(n)是关于正整数n的命题.小明证明了命题f(1),f(2),f(3)均成立,并对任意的正整数k,在假设f(k)成立的前提下,证明了f(k+m)成立,其中m为某个固定的整数,若要用上述证明说明f(n)对一切正整数n均成立,则m的最大值为(  )

查看答案和解析>>

(2012•成都一模)在用数学归纳法证明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的过程中:假设当n=k(k∈N*,k≥3)时,不等式f(k)<1成立,则需证当n=k+1时,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),则g(k)=(  )

查看答案和解析>>


同步练习册答案