3.关于x的方程(x2-1)2-|x2-1|+k=0.给出下列四个命题: ①存在实数k.使得方程恰有2个不同的实根 ②存在实数k.使得方程恰有4个不同的实根 ③存在实数k.使得方程恰有5个不同的实根 ④存在实数k.使得方程恰有8个不同的实根 其中假命题的个数是 查看更多

 

题目列表(包括答案和解析)

关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根;
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

设f(x)=
1+ax
1-ax
且a≠1),函数y=g(x)的图象与函数y=f(x)图象关于直线x-y=0对称.
(1)求函数y=g(x)的解析式及定义域;
(2)设关于x的方程loga
t
(x2-1)(7-x)
=g(x)
在[2,6]上有实数解,求t的取值范围;
(3)当a=e(e为自然对数的底数)时,证明:
n
k=2
g(k)>
2-n-n2
2n•(n+1)

查看答案和解析>>

关于x的方程
4-x2
=x+a有且只有一个实根,则a的取值范围是
[-2,2)∪{2
2
}
[-2,2)∪{2
2
}

查看答案和解析>>

(理科)若关于x的方程
4-x2
-kx+2k=0有2个不同的实数根,则实数k的取值范围是
 

查看答案和解析>>

若关于x的方程
1-x2
=kx+2
恰有两个实根,则k的取值范围是
[-2,-
3
)
(
3
,2]
[-2,-
3
)
(
3
,2]

查看答案和解析>>


同步练习册答案