题目列表(包括答案和解析)
在
中,满足
,
是
边上的一点.
(Ⅰ)若
,求向量
与向量
夹角的正弦值;
(Ⅱ)若
,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求
第二问因为
,
=m所以
,![]()
(1)当
时,则
=
(2)当
时,则
=![]()
第三问中,解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而![]()
运用三角函数求解。
(Ⅰ)解:设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为
,
=m所以
,![]()
(1)当
时,则
=
;-2分
(2)当
时,则
=
;--2分
(Ⅲ)解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而
---2分
=
=![]()
=
…………………………………2分
令
,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,![]()
设
是直角坐标系中,x轴、y轴正方向上的单位向量,设
![]()
(1)若(
,求
.
(2)若
时,求
的夹角
的余弦值.
(3)是否存在实数
,使
,若存在求出
的值,不存在说明理由.
【解析】第一问中,利用向量的数量积为0,解得为m=-2
第二问中,利用
时,结合向量
的夹角
的余弦值公式解得
第三问中,利用向量共线,求解得到m不存在。
(1)因为设
是直角坐标系中,x轴、y轴正方向上的单位向量,设
![]()
![]()
(2)因為
![]()
即
;
(3)假設存在实数
,使
,則有
![]()
因此
不存在;
已知![]()
(1)求
;
(2)求向量
在向量
方向上的投影.
【解析】第一问利用向量的数量积公式可知
![]()
,然后利用数量积的性质求解![]()
第二问中,先求解
,然后利用投影的定义得到向量
在向量
方向上的投影即为
=
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量![]()
![]()
(Ⅰ)求角A的大小;
(Ⅱ)若
,试判断b·c取得最大值时△ABC形状.
【解析】本试题主要考查了解三角形的运用。第一问中利用向量的数量积公式
,且由![]()
(2)问中利用余弦定理
,以及
,可知
,并为等边三角形。
解:(Ⅰ)![]()
![]()
![]()
………………………………6分
(Ⅱ)![]()
………………………………8分
![]()
……………10分
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com