突出重点.综合考查.在知识与方法的交汇点处设计命题.在不等式问题中蕴含着丰富的函数思想.不等式又为研究函数提供了重要的工具.不等式与函数既是知识的结合点.又是数学知识与数学方法的交汇点.因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时.将不等式的重点知识以及其他知识有机结合.进行综合考查.强调知识的综合和知识的内在联系.加大数学思想方法的考查力度.是高考对不等式考查的又一新特点. 查看更多

 

题目列表(包括答案和解析)

考查复合函数求导的基础知识以及导数知识的综合应用.
已知函数f(x)=ln(ax+1)+
1-x1+x
,x≥0
,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

考查复合函数求导的基础知识以及导数知识的综合应用.
已知函数,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

考查复合函数求导的基础知识以及导数知识的综合应用.
已知函数数学公式,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

某市统考成绩大体上反映了全市学生的成绩状况,因此可以把统考成绩作为总体,设平均成绩μ=480,标准差σ=100,总体服从正态分布,若全市重点校录取率为40%,那么重点录取分数线可能划在
 
分(已知φ(0.25)=0.6).

查看答案和解析>>

莆田四中高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为
23
,且每道题正确完成与否互不影响.
(Ⅰ)求考生甲能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为ξ,写出ξ的概率分布,并求Eξ及Dξ;
(Ⅲ)试用统计知识分析比较甲、乙考生在该实验学科上的能力水平.

查看答案和解析>>


同步练习册答案