突出不等式的知识在解决实际问题中的应用价值.借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质.证明.解法及最值方面的应用.高考试题中有以下几个明显的特点: (1)不等式与函数.数列.几何.导数,实际应用等有关内容综合在一起的综合试题多.单独考查不等式的试题题量很少. (2)选择题,填空题和解答题三种题型中均有各种类型不等式题.特别是应用题和压轴题几乎都与不等式有关. (3)不等式的证明考得比得频繁,所涉及的方法主要是比较法.综合法和分析法.而放缩法作为一种辅助方法不容忽视. 查看更多

 

题目列表(包括答案和解析)

试用结构图表示“不等式”的知识结构.

查看答案和解析>>

i2+i3+i4对应的点在


  1. A.
    实轴上
  2. B.
    虚轴上
  3. C.
    第一象限
  4. D.
    第三象限

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.
解:令f(x)=21-x+a,因为f(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上单调递减
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
学习以上问题的解法,解决下面的问题,已知:函数f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函数f-1(x)及反函数的定义域A;
②设B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>


同步练习册答案