16.在中...⊥于. 若.则有序实数对= . 查看更多

 

题目列表(包括答案和解析)

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β

(Ⅰ)计算:(2,3)⊙(-1,4);

(Ⅱ)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;

(Ⅲ)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;

(Ⅳ)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“?”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1?z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.
下面命题:
①1?i?0;
②若z1?z2,z2?z3,则z1?z3
③若z1?z2,则对于任意z∈C,z1+z?z2+z;
④对于复数z?0,若z1?z2,则z•z1?z•z2
其中真命题是
 
.(写出所有真命题的序号)

查看答案和解析>>

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1>z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题为假命题的是(填入满足题意的所有序号)______
①1>i>0
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则对于任意z∈C,z1+z>z2+z
④对于复数z>0,若z1>z2,则z•z1>z•z2

查看答案和解析>>

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2当且仅当“a1>a2”或“a1=a2且b1>b2”.
按上述定义的关系“>”,给出如下四个命题:
①1>i>0;
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则,对于任意z∈C,z1+z>z2+z;
④对于复数z>0,若z1>z2,则zz1>zz2
其中所有真命题的个数为( )>>>
A.1
B.2
C.3
D.4

查看答案和解析>>

在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R,i为虚数单位),“z1>z2”当且仅当“a1>a2”或“a1=a2且b1>b2”.下面命题为假命题的是(填入满足题意的所有序号)   
①1>i>0
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则对于任意z∈C,z1+z>z2+z
④对于复数z>0,若z1>z2,则z•z1>z•z2

查看答案和解析>>


同步练习册答案