已知为椭圆的右焦点.直线过点且与双曲线的两条渐近线分别交于点.与椭圆交于点. (1)若.双曲线的焦距为4.求椭圆方程. (2)若(为坐标原点)..求椭圆的离心率. 已知椭圆C过点是椭圆的左焦点.P.Q是椭圆C上的两个动点.且|PF|.|MF|.|QF|成等差数列. (1)求椭圆C的标准方程, (2)求证:线段PQ的垂直平分线经过一个定点A, (3)设点A关于原点O的对称点是B.求|PB|的最小值及相应点P的坐标. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)如图,已知为椭圆的右焦点,直线过点且与双曲线的两条渐进线分别交于点,与椭圆交于点.

 

 

(I)若,双曲线的焦距为4。求椭圆方程。

(II)若为坐标原点),,求椭圆的离心率

 

 

查看答案和解析>>

如图,已知是椭圆的右焦点;轴交于两点,其中是椭圆的左焦点.

1求椭圆的离心率;

2轴的正半轴的交点为,点是点关于轴的对称点,试判断直线的位置关系;

3设直线交于另一点,若的面积为,求椭圆的标准方程.

 

查看答案和解析>>

如图,已知是椭圆的右焦点;圆轴交于两点,其中是椭圆的左焦点.

(1)求椭圆的离心率;
(2)设圆轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.

查看答案和解析>>

(本题13分)已知椭圆的方程是,点分别是椭圆的长轴的左、右端点,

左焦点坐标为,且过点

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆的右焦点,以为直径的圆记为圆,试问:过点能否引圆的切线,若能,求出这条切线与轴及圆的弦所对的劣弧围成的图形的面积;若不能,说明理由。

 

查看答案和解析>>

已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点

(1)求椭圆的方程;

(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;

(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案