理解对数的概念.掌握对数的运算性质.掌握对数函数的概念.图象和性质. 查看更多

 

题目列表(包括答案和解析)

如何理解对数的概念及性质?

查看答案和解析>>

(1)对数的概念:如果ab=N(a>0,a≠1),那么幂指数b叫做以a为底数N的对数,记作     ,其中a叫做底数,N叫做     .?

(2)积、商、幂、方根的对数(M,N都是正数,a>0,且a≠1,n≠0).?

=     ;?

=     ;?

=     ;?

(3)对数的换底公式及对数恒等式(供选用).?

=     (对数恒等式);?

=     ;?

(换底公式);?

;?

.?

(4)指数式与对数式的关系如下表:

 

 

式子

名称

 

 

a

b

N

指数式

ab=N

 

 

 

对数式

logaN=b

 

 

 

 

查看答案和解析>>

一般地,如果ax=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作________,其中a叫做对数的________,N叫做对数的________.

查看答案和解析>>

映射到底是什么?怎样理解映射的概念?

查看答案和解析>>

(2013•闸北区一模)假设你已经学习过指数函数的基本性质和反函数的概念,但还没有学习过对数的相关概念.由指数函数f(x)=ax(a>0且a≠1)在实数集R上是单调函数,可知指数函数f(x)=ax(a>0且a≠1)存在反函数y=f-1(x),x∈(0,+∞).请你依据上述假设和已知,在不涉及对数的定义和表达形式的前提下,证明下列命题:
(1)对于任意的正实数x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函数y=f-1(x)是单调函数.

查看答案和解析>>


同步练习册答案