椭圆的中心为坐标原点,焦点在轴上,焦点到相应的准线的距离以及离心率均为,直线与轴交于点,与椭圆交于相异两点.且. (1)求椭圆方程; (2)若.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.

查看答案和解析>>

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且
OM
OA
OB
(λ,μ∈R)
,证明λ22为定值.

查看答案和解析>>

(2013•莱芜二模)设椭圆的中心为坐标原点O,焦点在x轴上,焦距为2,F为右焦点,B1为下顶点,B2为上顶点,SB1FB2=1
(I)求椭圆的方程;
(Ⅱ)若直线l同时满足下列三个条件:①与直线B1F平行;②与椭圆交于两个不同的点P、Q;③S△POQ=
23
,求直线l的方程.

查看答案和解析>>

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的离心率为(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>


同步练习册答案