21. 已知椭圆C的方程是.斜率为1的直线l与椭圆C交于 两点. (1)若椭圆的离心率.直线l过点M(b.0).且.求椭圆的方程,(2)直线l过椭圆的右焦点F.设向量.若点P在椭圆C上.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.

(Ⅰ)求椭圆C的方程;

(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

(本小题满分14分)

已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l与椭圆C交于AB两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

 

查看答案和解析>>

(本小题满分14分)

已知椭圆C:,左焦点,且离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.       求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

(本小题满分14分)

已知椭圆C:,左焦点,且离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.       求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

(本小题满分14分)

已知F1F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线CPQ两个不同的交点,点P关于x轴的对称点记为M.设=λ.

(Ⅰ)求曲线C的方程;

(Ⅱ)证明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.

 

 

查看答案和解析>>


同步练习册答案