17. 如图:平面.四边形是矩形..与平面所成的角是.点是的中点.点在边上移动. (1)当点为的中点时.试判断与平面的位置关系.并说明理由, (2)证明:不论点在边上何处.都有, 查看更多

 

题目列表(包括答案和解析)

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.
(1)求的值;(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

查看答案和解析>>

(本题满分15分)如图,已知直线与抛物线和圆都相切,FC1的焦点.

(1)求ma的值;

(2)设AC1上的一动点,以A为切点作抛物线C1的切线l,直线ly轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;

(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2y轴交点为N,连接MF交抛物线C1P、Q两点,求△NPQ的面积S的取值范围.

 

查看答案和解析>>

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

 

 

查看答案和解析>>

(本题满分15分)如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线

的切线,直线轴于点,以

邻边作平行四边形,证明:点在一条

定直线上;

  (Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为

直线轴交点为,连接交抛物线

两点,求△的面积的取值范围.

查看答案和解析>>

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

查看答案和解析>>


同步练习册答案