20. 矩形ABCD与矩形ABEF的公共边为AB.且平面ABCD平面ABEF.如图3所示.FD. AD=1. EF=. (Ⅰ)证明:AE 平面FCB, (Ⅱ)求异面直线BD与AE所成角的余弦值 (Ⅲ)若M是棱AB的中点.在线段FD上是 否存在一点N.使得MN∥平面FCB? 证明你的结论. 查看更多

 

题目列表(包括答案和解析)

矩形ABCD与矩形ABEF有公共边AB,且平面ABCD⊥平面ABEF,如图,又FD=2,AD=1,EF=
3

(1)证明AE⊥平面FCB.
(2)求异面直线BD与AE所成角的余弦值.
(3)若M是棱AB的中点,在线段FD上是否存在一点N,使得MN∥平面FCB?证明你的结论.

查看答案和解析>>

例1:某建材厂要生产一批如图所示的窗框,它由矩形ABCD与以AB为直径的半圆组成,已知窗框的框架的总面积为1平方米,制造矩形ABCD的直线型钢材每米价格为4元,制造半圆的弧形钢材每米价格为6元,设AB=2r,制造每扇窗框的材料价格为S元,把S表示成r的函数,并求S的最小值.

查看答案和解析>>

精英家教网如图,矩形ABCD与矩形AB′C′D全等,且所在平面所成的二面角为a,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.
(1)求证:QQ′∥平面ABB′;
(2)当b=
2
a
,且a=
π
3
时,求异面直线AC与DB′所成的角;
(3)当a>b,且AC⊥DB'时,求二面角a的余弦值(用a,b表示).

查看答案和解析>>

精英家教网矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E恰与BC上的点P重合.设AB=1,FA=x(x>1),AD=y,则当x=
 
时,y有最小值.

查看答案和解析>>

矩形ABCD与矩形ABEF的公共边为AB,且平面ABCD平面ABEF,如图所示,FD, AD=1, EF=

(Ⅰ)证明:AE 平面FCB;
(Ⅱ)求异面直线BD与AE所成角的余弦值
(Ⅲ)若M是棱AB的中点,在线段FD上是否存在一点N,使得MN∥平面FCB?
证明你的结论.

查看答案和解析>>


同步练习册答案