题目列表(包括答案和解析)
(本题满分14分)
已知
是函数
的一个极值点,且函数
的图象在
处的切线的斜率为2
.
(Ⅰ)求函数
的解析式并求单调区间.(5分)
(Ⅱ)设
,其中
,问:对于任意的
,方程![]()
在区间
上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.(9分)
(本题满分14分)已知函数
(
为常数,
).
(Ⅰ)当
时,求函数
在
处的切线方程;
(Ⅱ)当
在
处取得极值时,若关于
的方程
在[0,2]上恰有两个不相等的实数根,求实数
的取值范围;
(Ⅲ)若对任意的
,总存在
,使不等式
成立,求实数
的取值范围.
(本题满分14分)已知以函数
的图象上的点
为切点的切线的倾斜角为
.
(1)求
的值;
(2)是否存在正整数
,使不等式
对于
恒成立?若存在,求出最小的正整数
,若不存在,说明理由;
(3)对于
,比较
与
的大小.
(本题满分14分)
已知
是函数
的一个极值点,且函数
的图象在
处的切线的斜率为2
.
(Ⅰ)求函数
的解析式并求单调区间.(5分)
(Ⅱ)设
,其中
,问:对于任意的
,方程![]()
在区间
上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.(9分)
(本题满分14分)
对于函数
,若存在
成立,则称
的不动点.如果函数
有且只有两个不动点0,2,且![]()
(1)求函数
的解析式;
(2)已知各项不为零的数列
,求数列通项
;
(3)如果数列
满足
,求证:当
时,恒有
成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com