5.设a1 = 2.数列|1+2an|是以3为公比的等比数列.则a4的值为 ( ) A.67 B.77 C.22 D.202 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的首项a1=2a+1(a是常数,且a≠1),an=2an-1+n24n+2(n≥2),数列{bn}的首项b1=a,bn=an+n2(n≥2).

(1)证明:{bn}从第2项起是以2为公比的等比数列;

(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;

(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

已知数列{an}的首项a12a1(a是常数a≠1)

an2an1n24n2(n≥2)数列{bn}的首项b1a

bnann2(n≥2)

(1)证明:{bn}从第2项起是以2为公比的等比数列;

(2)Sn为数列{bn}的前n项和{Sn}是等比数列求实数a的值

(3)a>0求数列{an}的最小项.

 

查看答案和解析>>

(理)(1)证明:若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an}是以A为公比的等比数列;

(2)若数列{an}对于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函数f(x)在x=1处的导数.

(文)设数列{an}的前n项和为Sn,已知对于任意的n∈N*,都有Sn=2an-n.

(1)求数列{an}的首项a1及递推关系式:an+1=f(an);

(2)先阅读下面的定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,

则数列{an}是以A为公比的等比数列”.请你在(1)的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn

查看答案和解析>>


同步练习册答案