已知函数f (x)=(a>0.x>0). (1)求证:f (x)在上是递增函数. (2)若f (x)在[m,n]上的值域是[m,n](m≠n).求a的取值范围并求相应的m.n的值. (3)若f (x)≤2x在上恒成立.求a的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ln(x+1)-ax+
1-a
x+1
a>
1
2
).
(Ⅰ)当曲线y=f(x)在(1,f(1))处的切线与直线l:y=2x+1垂直时,求a的值;
(Ⅱ)求函数f(x)的单调区间.
(III)求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<ln(n+1)<1+
1
2
+
1
3
+…+
1
n
   (n∈N*)

查看答案和解析>>

(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;
(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)=2x+1,求f(x)在区间[-2,0]上的表达式.

查看答案和解析>>

已知函数f(x)=
1
a
-
1
x
(a≠0,x≠0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)设F(x)=f(x)-a,且F(x)为奇函数,求a的值;
(3)若关于t(t≠0)的方程f(
1
t2
)=t4+1
有实数解,求a的取值范围.

查看答案和解析>>

已知函数f(x)=e2x-2tx,g(x)=-x2+2tex-2t2+
1
2

(1)求f(x)在区间[0,+∞)的最小值;
(2)求证:若t=1,则不等式g(x)≥
1
2
对于任意的x∈[0,+∞)恒成立;
(3)求证:若t∈R,则不等式f(x)≥g(x)对于任意的x∈R恒成立.

查看答案和解析>>

已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=
1
[
1
2
f(n)+
1
2
][g(n)+3]

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Tn,并求使得Tn
m
150
对任意n∈N*都成立的最大正整数m;
(Ⅲ)求证:
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
3

查看答案和解析>>


同步练习册答案