a与b的数量积的概念 已知两个非零向量a和b.它们的夹角为θ.则数量|a||b|cosθ叫做a与b的数量积.记作a·b. 注意:(1)a与b的数量积的结果是一个实数. 查看更多

 

题目列表(包括答案和解析)

已知F1、F2是双曲线的左、右焦点,点P(x,y)是双曲线右支上的一个动点,且|PF1|的最小值为8,的数量积的最小值是-16.
(1)求双曲线的方程;
(2)过点C(9,16)能否作直线l与双曲线交于A、B两点,使C为线段AB的中点.若能,求出直线l的方程;若不能,说明理由.

查看答案和解析>>

已知向量ab满足关系式|a-λb|=|λab|(λ>0),且a=(cosα,sinα),b=(-).

(1)试用λ表示向量ab的数量积;

(2)求ab所夹锐角的最大值,并求此时λ的值.

查看答案和解析>>

已知F1、F2是双曲线的左、右焦点,点P(x,y)是双曲线右支上的一个动点,且|PF1|的最小值为8,的数量积的最小值是-16.

(1)求双曲线的方程;

(2)过点C(9,16)能否作直线l与双曲线交于A、B两点,使C为线段AB的中点.若能,求出直线l的方程;若不能,说明理由.

查看答案和解析>>

由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”类比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“(m•n)t=m(n•t)”类比得到“(
a
b
c
=
a
•(
b
c
)”;
④“t≠0,mt=xt⇒m=x”类比得到“
p
0
a
p
=
x
p
a
=
x
”;
⑤“|m•n|=|m|•|n|”类比得到“|
a
b
|=|
a
|•
|b
|
”;
⑥“
ac
bc
=
a
b
”类比得到“
a
c
b
c
=
a
b
”.
以上式子中,类比得到的结论正确的个数是(  )

查看答案和解析>>

(2009•聊城一模)由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”类比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“t≠0,mt=nt⇒m=n”类比得到“
c
≠0,
a
c
=
b
c
a
=
c
”;
④“|m•n|=|m|•|n|”类比得到“|
a
b
|=|
a
|•|
b
|”.
以上类比得到的正确结论的序号是
①②
①②
(写出所有正确结论的序号).

查看答案和解析>>


同步练习册答案