12.已知椭圆:.抛物线:.且.的公共弦过椭圆的右焦点. (1)当轴时.求的值.并判断抛物线的焦点是否在直线上, (2)若且抛物线的焦点在直线上.求的值及直线的方程. BDCBDA 7. 8. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2 的顶点均为坐标原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 0 -1
2
4
y -2
2
1
16
-2 1
(Ⅰ)求分别适合C1,C2的方程的点的坐标;
(Ⅱ)求C1,C2的标准方程.

查看答案和解析>>

已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)若过曲线C1的右焦点F2的任意一条直线与曲线C1相交于A、B两点,试证明在x轴上存在一定点P,使得
PA
PB
的值是常数.

查看答案和解析>>

(2011•中山市三模)已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 1 -
5
2
2
y -2
2
0 -4
15
5
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)过点曲线的C2的焦点B的直线l与曲线C1交于M、N两点,与y轴交于E点,若
EM
1
MB
EN
2
NB
,求证:λ12为定值.

查看答案和解析>>

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足
OM
ON
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案