25.18.一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回. (1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率, (2)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率. 解:(1)从袋中依次摸出2个球共有种结果.第一次摸出黑球.第二次摸出白球有种结果.则所求概率 . (2)第一次摸出红球的概率为.第二次摸出红球的概率为.第三次摸出红球的概率为.则摸球次数不超过3次的概率为 . 查看更多

 

题目列表(包括答案和解析)

(陕西卷文18)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

(陕西卷文18)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X.若P(X=2)=
27

(1)求口袋中的白球个数;
(2)求X的概率分布与数学期望.

查看答案和解析>>

一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

一个口袋中装有大小相同的2个白球和4个黑球.采取不放回抽样方式,从中摸出两个球,设摸得白球的个数为ξ,则Eξ=
2
3
2
3

查看答案和解析>>


同步练习册答案