31.一个袋中装有大小相同的黑球.白球和红球.已知袋中共有10个球.从袋中任意摸出1个球.得到黑球的概率是,从袋中任意摸出2个球.至少得到1个白球的概率是.求: (1)从中任意摸出2个球.得到的都是黑球的概率, (2)袋中白球的个数. 解:(1)由题意知.袋中黑球的个数为. 记“从袋中任意摸出两个球.得到的都是黑球 为事件A.则. (2)记“从袋中任意摸出两个球.至少得到一个白球 为事件B. 设袋中白球的个数为.则 .得到. 查看更多

 

题目列表(包括答案和解析)

已知一个袋中装有大小相同的黑球、白球和红球,共有10个球,从袋中任意摸出1个球,得到黑球的概率是
25
,则从中任意摸出2个球,得到的都是黑球的概率为
 

查看答案和解析>>

(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是
2
5
;从袋中任意摸出2个球,至少得到1个白球的概率是
7
9
.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=
1
1

查看答案和解析>>

一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是
2
5
;从中任意摸出2个球,至少得到1个白球的概率是
7
9
.求:
(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;
(Ⅱ)袋中白球的个数.

查看答案和解析>>

(2013•嘉兴二模)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X为取出3球中白球的个数,已知P(X=3)=
521

(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量X的分布列及其数学期望.

查看答案和解析>>

一个袋中装有大小相同的黑球和红球,已知袋中共有5个球,从中任意摸出1个球,得到黑球的概率是
25
.现将黑球和红球分别从数字1开始顺次编号.
(Ⅰ)若从袋中有放回地取出两个球,每次只取出一个球,求取出的两个球上编号为相同数字的概率.
(Ⅱ)若从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率.

查看答案和解析>>


同步练习册答案