17.一条变动的直线与椭圆+=1交于.两点.是上的动点.满足关系.若直线在变动过程中始终保持其斜率等于1.求动点的轨迹方程.并说明曲线的形状. 查看更多

 

题目列表(包括答案和解析)

一条变动的直线L与椭圆+=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状.

 

查看答案和解析>>

(理)设斜率为k1的直线L交椭圆C:
x2
2
+y2=1
于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
x2
a2
+
y2
b2
=1

(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>

(理)设斜率为k1的直线L交椭圆C:于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>

(2007•杨浦区二模)(理)设斜率为k1的直线L交椭圆C:
x2
2
+y2=1
于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
x2
a2
+
y2
b2
=1

(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>


同步练习册答案