题目列表(包括答案和解析)
(本题14分)数列
的各项均为正数,
为其前
项和,对于任意
总有
成等差数列。
(1)求
的通项公式;
(2)设数列
的前
项和为
,且
,求证对任意的实数
和任意的整数
总有
;
(3)正数数列
中,
,求数列
的最大项。
(09年长沙一中一模文)(13分) 设数列
的前
项和为
,且
,其中
为常数且
.
(1)证明:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,
(![]()
求数列
的通项公式;
(3)设
,
,数列
的前
项和为
,求证:当
时,
.
(本题14分)数列
的各项均为正数,
为其前
项和,对于任意
总有
成等差数列。
(1)求
的通项公式;
(2)设数列
的前
项和为
,且
,求证对任意的实数
和任意的整数
总有
;
(3)正数数列
中,
,求数列
的最大项。
本小题满分12分
设数列
的前
项和为
,如果
为常数,则称数列
为“科比数列”.
(1)等差数列
的首项为1,公差不为零,若
为“科比数列”,求
的通项公式;
(2)数列
的各项都是正数,前
项和为
,若
对任意
都成立,试推断数列
是否为“科比数列”?并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com