题目列表(包括答案和解析)
(本小题满分12分)
已知数列
中,
,
,且![]()
.
(1)设
,求
是的通项公式;
(2)求数列
的通项公式;
(3)若
是
与
的等差中项,求
的值,并证明:对任意的
,
是
与
的等差中项.
(本题满分16分)已知数列
中,
,
,且![]()
.(Ⅰ)设
,证明
是等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)若
是
与
的等差中项,求
的值,并证明:对任意的
,
是
与
的等差中项.
.若果数列
的项构成的新数列
是公比为
的等比数列,则相应的数列
是公比为
的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列
中,
,
,且
.
(1)试利用双等比数列法求数列
的通项公式;
(2)求数列
的前
项和![]()
(本题满分12分)
已知
数列
中,
,![]()
.且
k为等比数列。
(Ⅰ) 求实数
及数列
、
的通项公式;![]()
(Ⅱ) 若
为
的前
项和,求![]()
(本小题满分12分)
已知数列
中,
,
,且![]()
.
(1)设
,求
是的通项公式;
(2)求数列
的通项公式;
(3)若
是
与
的等差中项,求
的值,并证明:对任意的
,
是
与
的等差中项.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com