18.如图.在四棱锥中.底面ABCD是四边长为1的菱形., 面, ,M为OA的中点.N为BC的中点. (1)证明:直线面OCD错误!不能通过编辑域代码创建对象., (2)求异面直线AB与MD所成角的大小, (3)求点B到平面OCD的距离. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.

(I)求证:平面

(II)求证:

(III)设PD=AD=a, 求三棱锥B-EFC的体积.

【解析】第一问利用线面平行的判定定理,,得到

第二问中,利用,所以

又因为,从而得

第三问中,借助于等体积法来求解三棱锥B-EFC的体积.

(Ⅰ)证明: 分别是的中点,    

.       …4分

(Ⅱ)证明:四边形为正方形,

.    ………8分

(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

 

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是边长为
2
的正方形,E为PC的中点,PB=PD.
平面PBD⊥平面ABCD.
(1)证明:PA∥平面EDB.
(2)求三棱锥E-BCD与三棱锥P-ABD的体积比.

查看答案和解析>>

精英家教网如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求异面直线AB与MD所成角的大小;
(Ⅱ)求点B到平面OCD的距离.

查看答案和解析>>

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

16、如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB.

查看答案和解析>>


同步练习册答案