题目列表(包括答案和解析)
已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1, 关于x的方程:
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
(可不用证明函数的连续性和可导性)
已知函数f(x)=alnx―ax―3(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图像在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数
在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数h(x)=(p-2)x―
―3,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
已知函数f(x)=alnx―ax―3(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图像在点(2,f(2))处的切线的斜率为1,问:m在什么范围取值时,对于任意的t∈[1,2],函数
在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数
,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
已知
为函数
上的任意一点,
为点P处切线的斜率,则
的部分图像是( )
A B C D
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com