估算法: 如图.在多面体ABCDEF中.已知面ABCD是边长为3的正方形.EF//AB. EF=3/2.EF与面AC的距离为2.则该多面体的体积为( ) A)9/2 B)5 C)6 D)15/2 查看更多

 

题目列表(包括答案和解析)

(02年北京卷文)(12分)

如图,在多面体ABCD―A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h..

   (Ⅰ)求侧面ABB1A1与底面ABCD所成二面角正切值;

   (Ⅱ)在估测该多面体的体积时,经常运用近似公式

 V=S中截面?h来计算.已知它的体积公式是

 (S上底面+4S中截面+S下底面),

试判断V与V的大小关系,并加以证明.

   (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)

查看答案和解析>>

(18)如图,在多面体ABCDA1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于EF两点,上、下底面矩形的长、宽分别为cdab

acbd,两底面间的距离为h.

 

 

 

 

 

 

 

 

(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;

(Ⅱ)证明:EF∥面ABCD

(Ⅲ)在估测该多面体的体积时,经常运用近似公式

      V=S中截面·h来计算.已知它的体积公式是
          V=S上底面+4S中截面+S下底面),试判

      断VV的大小关系,并加以证明.

(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)

查看答案和解析>>

如图,在多面体ABCD-A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h。
(1)求侧面ABB1A1与底面ABCD所成二面角正切值;
(2)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算,已知它的体积公式是 (S上底面+4S中截面+S下底面),试判断V与V的大小关系,并加以证明。

查看答案和解析>>

如图,在多面体ABCD-A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h,
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD;
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算。已知它的体积公式是 V=(S上底面+4S中截面+S下底面),试判断V与V的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)

查看答案和解析>>

(18)如图,在多面体ABCDA1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为cdab,且acbd,两底面间的距离为h.

(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的正切值;

(Ⅱ)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算.已知它的体积公式

V=S上底面+4S中截面+S下底面),试判断VV的大小关系,并加以证明.

(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)

查看答案和解析>>


同步练习册答案