如图:P.A.B....且. (1)求P轨迹E, (2)过E上任意一点向作两条切线PF.PR.且PF.PR交轴于M.N.求:MN长度范围. 八校联考答案(理) 查看更多

 

题目列表(包括答案和解析)

如图:平面直角坐标系中为一动点,A(-1,0),B(2,0),且
(1)求动点P的轨迹E的方程;
(2)过E上任意一点作两条切线PF、PR,且PF、PR交y轴于M、N,求MN长度的取值范围。

查看答案和解析>>

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点.(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1、PF2的斜线分别为k1、k2.①证明:
1
k1
-
3
k2
=2
;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

精英家教网如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两个端点为A、B.已知|
OB
|
|
F1B
|
|F1F2
|
成等比数列,|
F1B
|
-
|F1F2
|
=2,与x轴不垂直的直线l与C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1•k2=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)求证直线l与y轴相交于定点,并求出定点坐标;
(Ⅲ)当弦MN的中点P落在四边形F1AF2B内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>

精英家教网如图,平面上定点F到定直线l的距离|FM|=2,P为该平面上的动点,过P作直线l的垂线,垂足为Q,且(
PF
+
PQ
)•(
PF
-
PQ
)=0

(1)试建立适当的平面直角坐标系,求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点N,已知
NA
=λ1
AF
NB
=λ2
BF
,求证:λ1+λ2
为定值.

查看答案和解析>>

精英家教网如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).
(Ⅰ)求圆心M在l1上且与直线l2相切于点P的圆⊙的方程.
(Ⅱ)在(Ⅰ)的条件下;若直线l1分别与直线l2、圆⊙依次相交于A、B、C三点,利用代数法验证:|AP|2=|AB|•|AC|.

查看答案和解析>>


同步练习册答案