题目列表(包括答案和解析)
(本小题满分12分)
已知点
,
是平面上一动点,且满足
,
(1)求点
的轨迹
对应的方程;
(2)已知点
在曲线
上,过点
作曲线
的两条弦
,且
的斜率为
满足
,试判断动直线
是否过定点,并证明你的结论.
(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中
,且
,
分别为
、
、
的中点
![]()
(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角
的大小为
?若存在,求出CQ的长;若不存在,请说明理由。
(本小题满分12分)
已知定点A(
,0),B是圆C:(x-
)2+y2=16,(C为圆心)上的动点,AB的垂直平分线与BC交与点E.
(1)求动点E的轨迹方程.
(2)设直线l:y=kx+m (k≠0,m>0)与E的轨迹交与P,Q两点,且以PQ为对角线的菱形的一顶点为M(-1,0),求△OPQ面积的最大值及此时直线l的方程.
(本小题满分12分)已知曲线C的极坐标方程 是
=1,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
为参数)。
(1)写出直线
与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
得到曲线
,设曲线
上任一点为
,求
的最小值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com