20. 若椭圆过点.离心率为.⊙O的圆心在原点.直径为椭圆的短轴.⊙M的方程为.过⊙M上任一点P作⊙O的切线PA.PB.切点为A.B. (1) 求椭圆的方程, (2)若直线PA与⊙M的另一交点为Q.当弦PQ最大时.求直线PA的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:

 

1)求的标准方程, 并分别求出它们的离心率

2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分) 

设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上

有一点,满足,且.

   (1)求椭圆的离心率;

   (2)若过三点的圆恰好与直线相切,求椭圆的方程;

   (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。  

 

 

查看答案和解析>>

(本小题满分14分)

椭圆的离心率为,长轴端点与短轴端点间的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线与椭圆交于两点为坐标原点,若,求

直线的斜率

 

查看答案和解析>>

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:













 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:












 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案