题目列表(包括答案和解析)
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1)求
,
的标准方程, 并分别求出它们的离心率
;
2)设直线
与椭圆
交于不同的两点
,且
(其中
坐标原点),请问是否存在这样的直线
过抛物线
的焦点
若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分14分)
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上
有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
![]()
(本小题满分14分)
椭圆
的离心率为
,长轴端点与短轴端点间的距离为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
交于两点
,
为坐标原点,若
,求
直线
的斜率
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com