20. 解:(1)由题意得: . ---------4分 所以椭圆的方程为 ----------------6分 (2)由题可知当直线PA过圆M的圆心(8.6)时.弦PQ最大. --8分 因为直线PA的斜率一定存在.设直线PA的方程为:y-6=k(x-8) --10分 又因为PA与圆O相切.所以圆心(0.0)到直线PA的距离为 --11分 即 可得 --------12分 所以直线PA的方程为: ----14分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

     (ⅰ)求当时,的最小值;

     (ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>


同步练习册答案