题目列表(包括答案和解析)
(本小题满分14分)
已知:函数
(
),
.
(1)若函数
图象上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)已知函数f(x)=aex,g(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求证:对任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 设y =g(x-1)的图象为C1,h(x)=-x2+bx的图象为C2,若C1与C2相交于P、Q,过PQ中点垂直于x轴的直线分别交C1、C2于M、N,问是否存在实数b,使得C1在M处的切线与C2在N处的切线平行?说明你的理由.
(本小题满分14分)已知函数f(x)=aex,g(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求证:对任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 设y =g(x-1)的图象为C1,h(x)=-x2+bx的图象为C2,若C1与C2相交于P、Q,过PQ中点垂直于x轴的直线分别交C1、C2于M、N,问是否存在实数b,使得C1在M处的切线与C2在N处的切线平行?说明你的理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com