题目列表(包括答案和解析)
(本小题满分14分)已知二次函数
的图象过原点且关于y轴对称,记函数
(I)求b,c的值; (Ⅱ)当
的单调递减区间;(Ⅲ)试讨论函数
的图像上垂直于y轴的切线的存在情况。
(本小题满分14分)在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(I)若
,
,
,求方程
在区间
内的解集;
(II)若点
是曲线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(III)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.【说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.】
(本小题满分14分)
已知函数
的图像经过点
.
(1)求该函数的解析式;
(2)数列
中,若
,
为数列
的前
项和,且满足
,
证明数列
成等差数列,并求数列
的通项公式;
(3)另有一新数列
,若将数列
中的所有项按每一行比上一行多一项的规则排成
如下数表:
|
|
|
|
|
|
|
|
记表中的第一列数
构成的数列即为数列
,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第
行所有项的和.
(本小题满分14分)已知函数![]()
的图像过点
,且在该点的切线方程为
.
(Ⅰ)若
在
上为单调增函数,求实数
的取值范围;
(Ⅱ)若函数
恰好有一个零点,求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com